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Abstract
We use the classical N -soliton solution of a q-deformed lattice, the Maxwell–
Bloch (MB) lattice, which we reported recently (Rybin A V, Varzugin G G,
Timonen J and Bullough R K 2001 J. Phys. A: Math. Gen. 34 157) in order,
ultimately, to fully comprehend the ‘quantum soliton’. This object may be
the source of a new information technology (Abram I 1999 Quantum solitons
Phys. World 21–4). We suggested in Rybin et al 2001 that a natural quantum
mechanical matrix element of the q-deformed quantum MB lattice becomes in
a suitable limit the classical 1-soliton solution of the classical q-deformed MB
lattice explicitly derived by a variant of the Darboux–Bäcklund method. The
classical q-deformed MB lattice was introduced in Bogoliubov N M, Rybin A V,
Bullough R K and Timonen J 1995 Phys. Rev. A 52 1487. In this short paper
the quantum inverse method is viewed as a Darboux–Bäcklund transformation
at quantum level, two q-deformed quantum lattices are introduced and solved,
and relevant matrix elements are formally derived. Further investigation of the
classical limits of these matrix elements must however be deferred until future
work.

PACS numbers: 05.45.Yv, 02.30.-f, 42.65.Tg

Mathematics Subject Classification: 37Kxx, 70Hxx

1. Introduction and background

In a short paper [1] we reported for the first time N -soliton solutions (and in detail derived
especially the 1-soliton solution) of an integrable q-deformed one-dimensional lattice which
we had already introduced in [3]; and the soliton solutions found depend explicitly on q
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(q = eγ and γ > 0 is a real parameter). It is a feature of integrable q-deformed lattices that
q-deformation is possible only for such lattices; for in continuum limit the equations and their
solutions no longer depend on q (or γ ). Thus, in the case of the lattice introduced in [3] this
reduces in continuum limit to, with q → 1, the classical undeformed Maxwell–Bloch (MB)
envelope equations, also called the SIT (for ‘self-induced transparency’) equations; and this is
why we called the lattice the MB lattice. Since lattices are intrinsic to q-deformations, and our
lattice is by construction integrable, some report on it is appropriate at a SIDE meeting; and
for SIDE IV we report on aspects of the results obtained so far—particularly in the quantum
cases of this lattice.

Our papers [3,4] followed up ideas of quantum groups and particularly the q-bosons [3–6],
and the relevance of these to integrable systems theory. By working with the q-deformed
Lie–Poisson algebras suq(2) we derived as a c-number (i.e. as a classical) equation both the
q-deformed MB lattice system and its zero-curvature representation. The q-dependent soliton
solutions (q-solitons) were then obtained by a variant of the Darboux–Bäcklund dressing
method in the subsequent paper [1].

The hierarchy of continuum classical field equations ‘reduced Maxwell–Bloch’ (RMB) [8,
9], SIT (or envelope MB) [7, 9], sine-Gordon, and nonlinear Schrödinger (NLS) equations,
each in 1+1 dimensions, are completely integrable Hamiltonian systems in the usual sense, and
the hierarchy epitomizes the way in which, under a succession of slowly varying amplitude and
phase approximations [10,11] integrability is handed down in the fashion recently explored by
Calogero [12]. For example, [10] (and see also reference [96] therein) shows the wide-ranging
physical application of these equations—not just in quantum optics and nonlinear optics (to
which [10] is mostly devoted) but also, through the quantum NLS model, to low-temperature
physics and the theory of Bose–Einstein condensation in magnetic traps at some hundreds of
nanokelvin—a topic of considerable theoretical [10, 11] and experimental [13] interest at this
time, the latter [13] apparently justifying the theory [10, 11] for the non-integrable quantum
NLS in three space dimensions.

The classical NLS models are also important to modern optical communications—
especially trans-oceanic optical communication [10, 11]. In particular, the ‘optical soliton’,
a solution of the classical NLS in 1 + 1 dimensions, provides the fundamental ‘bit’ for
optical communication in fibres, trans-oceanic or not, and its quantum version, the ‘quantum
soliton’ [2, 10, 11] may be an important realization of a ‘qubit’ for ‘quantum information’
(quantum computing, logic gates [2, 11]) while, compared with current realizations in terms
of cavity quantum electrodynamics [11], this qubit will be relatively easily created, and then
maintained without dissipation, experimentally. In [1] it was already suggested that ‘quantum
solitons’ could be advantageously studied through the quantized form of the MB lattice [1, 3]
(for an early paper on the quantum solitons of the related sine-Gordon system see [14]). The
quantum q-deformed MB lattice is easily constructed by working with the quantum group
suq(2), that is Uq(su(2)), rather then the Poisson–Lie algebra suq(2). In this paper for the
SIDE IV meeting we elaborate further on this theme: we have noted that lattices are essential
for q-deformation; q-deformation is a theme of SIDE IV (as is the physical applications which
we have partly exemplified above); moreover at the classical level mostly studied in [1, 3]
the MB lattice equations are indeed simply integrable differential-difference equations (in the
dynamical variables sn, Hn and βn at each lattice side n)—a hallmark of the SIDE meetings.
The corresponding quantum lattices, the quantum MB lattices, which are the main concern of
this paper, replace these dynamical variables by quantum objects satisfying quantum integrable
Heisenberg differential-difference equations, providing a natural focus of interest for SIDE IV.

These last remarks justify our study for readers of the SIDE IV proceedings. But ultimately
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it is the aim of the investigation to compute quantum mechanical matrix elements like

lim
N→∞

〈0|C(λ1)C(λ2) . . . C(λN−1)βnB(λ1)B(λ2) . . . B(λN)|0〉 (1)

where the B(λ) are ‘creation operators’ acting on the vacuum |0〉 and the C(λ) = B†(λ)

are ‘annihilation operators’; the operators βn are viewed as ‘electric field operators’ for the
quantum lattice in particular. We wish to compute matrix elements (1) because, for example,
Wadati and others have shown [9, 10, 15, 16] that the classical soliton solution of the (1 + 1)-
dimensional attractive NLS model (with negative coupling constant c < 0) derives from a
quantum mechanical matrix element

lim
n→∞〈n,X, t |φ̂(x − vt)|n + 1, X′, t〉 (2)

where φ̂(x, t) satisfies (after scaling) the quantum attractive NLS equation (with c < 0)

−iφ̂t = φ̂xx − 2cφ̂†φ̂φ̂ (3)

(where the notation is the usual φ̂t = ∂φ̂/∂t etc) and the quantum fields φ̂, φ̂† satisfy
[φ̂, φ̂†] = δ(x − x ′) for bosons in 1 + 1 dimensions: v is a velocity and the states |n + 1, X′, t〉
in (2) are wave packets deriving from states |n + 1, P 〉 which are simultaneous eigenstates of
N̂ ≡ ∫

φ̂†φ̂ dx, P̂ ≡ −i
∫
φ̂†φ̂x dx (and of a further infinity of mutually commuting operators

which include the (attractive) Hamiltonian operator Ĥ = ∫
[φ̂†

x φ̂x + cφ̂†φ̂†φ̂φ̂] dx, c < 0,
thus establishing ‘complete quantum integrability’ [10, 11]). In principle we expect that the
q-dependent 1-soliton solution we gave explicitly in [1] derives in a similar way through matrix
elements like (1), although at the time of writing we have still to demonstrate these results.

The demonstration will be important because in the case of the NLS model in optical fibres
one would like, for example, to ‘squeeze’ the ‘photon number’ n so that quantum fluctuations
in n are reduced below the quantum-induced ‘shot noise’ level, thus increasing the precision
of the ‘bit’ (which as a quantum object is actually a ‘qubit’) carrying information in the fibre.
However, in the sequence for n → ∞ in equation (2) n is fixed, essentially as an eigenvalue
of the number operator N̂ , and cannot be squeezed. Even so, from different initial data,
namely from initial coherent states of the electric field operator rather than |n〉 states, data
provided in practice by an incident laser light source, such squeezing has been detected and
followed [2,10,11,17,18]. This physics seems to mean that modified matrix elements like (2)
will describe at quantum level the evolution of initially coherent incident light in the fibre into
appropriate multisoliton solutions much as this evolution must take place in a classical theory.

Interesting and even important as this may be, we can do little more in this short paper
than describe the quantum MB lattice and its eigenstates preparatory to evaluating the relevant
matrix elements like (2) elsewhere.

The q-deformed 1-soliton solution (the q-soliton) at classical level was obtained in [1] as
noted. For reference this is given with a sketch of the classical Darboux–Bäcklund method of
solution as the early part of section 2. For the matrix element (2) Wadati [15] uses the coordinate
Bethe ansatz [19] descriptions of the eigenstates |n, P 〉 by starting from the ‘n-string’ bound
states solutions of the quantum NLS model; section 2 finally arrives at the corresponding N -
string bound state solutions of the quantum q-deformed lattice MB (LMB) equations which
are introduced and then studied. Indeed, section 2 shows that there are at least two such q-
deformed LMB equations, LMB I and LMB II with Hamiltonians HI, HII respectively, which
have N -string bound state solutions, and that this is a generic property which is important to
a class of lattices and their various continuum limits. Their eigenstates we shall here take in
the strict Bethe ansatz (or quantum inverse method) form rather than in the coordinate Bethe
ansatz: these Bethe states are then the B(λ1) . . . B(λN)|0〉 states needed to evaluate the matrix
elements taken in the explicit form (1) for, with N replacing n + 1, N → N − 1. For the
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expression of these states in coordinate representation and the evaluation of the classical 1-
soliton solutions for N → ∞ following Wadati’s work [15, 16] for the quantum NLS model
we need the further work which must now be reported elsewhere. An interesting point is that
only for each fixed n does the quantum NLS model have a stable ground state [9] (otherwise
the system can lower its energy by sucking in (from the vacuum |0〉) more and more photons).
This problem is avoided by relativistic co-variance as exemplified by the sine-Gordon system,
and we believe that this property extends to the quantum SIT equations and thence to the
quantum LMB (lattice) systems.

This suggests that the LMB systems are much the deeper systems for studying quantum
systems of potential physical significance.

2. Two exactly solvable quantum models

In [3] we constructed the completely integrable classical lattice system whose equations of
motion for three dynamical variables sn, Hn and βn at each lattice site n can be written as

∂tβn = −1

2
q2(Nn+Hn)(βn+1 + βn) − i

2
q2Nn(sn + sn−1)

∂t sn = − i

2
(βn + βn+1)(1 + 2γ sns

∗
n) +

1

2
q2(Nn+Hn)(sn + sn−1)

∂tHn = i

2
(sn − iq2Hnβn)(β

∗
n + β∗

n+1) − i

2
(s∗

n + iq2Hnβ∗
n)(βn + βn+1).

(4)

Here q2Nn = 1 + 2γβ∗
nβn, q = eγ and γ > 0, is a real parameter (a coupling constant—see

below). Reference to [3] shows that in equations (4) we use sn = √
2γχn + iq2Hnβn: in [3] the

second equation is for ∂tχn. As can be checked (and cf [3]) when the lattice spacing � → 0
for a continuum limit with

t → t�−1 x = n� βn =
√
�E(x) χn = �S(x) Hn = �S3(x)

γ = κ�/2 κ > 0
(5)

one reaches the resonant sharp-line form of the envelope MB (or SIT) equations (1) of [1] via
the definitions

ε(ξ, τ ) = 2E(x, t) ρ(ξ, τ ) = −2iS(x, t) N(ξ, τ ) = 2S3(x, t). (6)

Our use of ‘LMB equations’ for equations (4) stems from this fact, as explained. A Hamiltonian
for this LMB system is [3]

HL
c = 1

2

M∑
n=1

{√
2γ

[
χ∗
n (βn+1 + βn) + χn(β

∗
n+1 + β∗

n)
]

+ iq2Hn
(
β∗
n+1βn − βn+1β

∗
n

)}
. (7)

For M < ∞ it would be natural to impose periodic boundary conditions. But we shall look
for lattice soliton solutions and here think of M → ∞ with suitable boundary conditions still
to be specified. The Poisson brackets of equation (7) are

{X∗
n,Xm} = i{2Hn}δmn {Hn,Xm} = −iXnδmn (8)

and the quantities X∗
n, Xn and Hn form the q-deformed suq(2) Lie–Poisson algebra—for by {·}

we mean {x} = (qx − q−x)/(2γ ). This algebra has a central element XnX
∗
n + {Hn}2 = {S}2.

The variables X∗
n, Xn enter (4) via χn = qHnXn [3]. The variables βn, β∗

n (the ‘electric fields’,
see equations (5), (6) above) satisfy the Lie–Poisson q-boson algebra

{βn, β
∗
m} = iq2Nnδmn {Nn, βm} = −iβnδmn. (9)



Solitons of q-deformed quantum lattices and the quantum soliton 10467

The quantum counterpart of the LMB system equations (7) is the lattice system described
by the quantum Hamiltonian

HL
q = 1

2

M∑
n=1

J (q)
[
χ+
n (βn + βn+1) + χ−

n (β
†
n + β

†
n+1)

] − iq2Hn(β
†
n+1βn − β†

nβn+1) (10)

with J (q) =
√
q − q−1, and we shall again choose here q = eγ > 1. We shall also impose

periodic boundary conditions n+M ≡ n (the number of lattice sites is even for simplicity). The
annihilation and creation operators βn, β†

n in (10), together with the related number operators
Nn = N†

n , form a q-boson algebra with the commutation relations

[βn, β
†
m] = q2Nnδmn [Nn, β

†
m] = β†

nδmn βn = (β†
n)

†. (11)

The q-spin operators in (10) are defined as χ−
n = qHnX−

n , χ+
n = X+

nq
Hn , where X±

n and
Hn are quantum operators belonging to the irreducible (2S + 1)-dimensional representation of
the quantum suq(2), i.e. Uq[su(2)], algebra. They satisfy

[X+
n,X

−
m] = [2Hn]δmn [Hn,X

±
m] = ±X±

n δmn. (12)

Here [·, ·] denotes the usual commutator, while the ‘box’ notation [·] means the operation
[x] = (qx − q−x)/(q − q−1).

Notice that the same continuum limit relations equations (5) apply in this quantum case
leading to the physically relevant quantum MB system, namely

H = +
i

2

∫ L

0
dx

[(
∂xE†(x)

)E(x) − E†(x)∂xE(x)
] − √

κ

∫ L

0
(S+(x)E(x) + S−(x)E†(x)). (13)

For S = 1/2 this is the two-level so-called Dicke model considered in [20].
A second quantum lattice model like HL

q is the Hamiltonian HII; in this notation we change
HL

q to HI simply. Thus HI is given by (10) and HII is given by

HII = − 1
2

M∑
n=1

q2Hn(β†
nβn−1 + βnβ

†
n−1) − i

√
η
(
(β†

n − β
†
n−1)χ

−
n − χ+

n (βn − βn−1)
)

+2η−1(q2Hn − q−2S). (14)

We can express the q-boson operators in terms of the ordinary ones b, b†: [b, b†] = 1,

β = (β†)† =
√

[N + 1]

N + 1
b N = b†b. (15)

The q-spins are realized in terms of the usual su(2) generators S3, S±: [S3, S±] = ±S±,
[S+, S−] = 2S3

χ+ = (χ−)† = S+

√
[S3 − S][S3 + S + 1]

(S3 − S)(S3 + S + 1)
H = S3 (16)

and the ‘box’ notation [·] is used.

3. The classical and quantum Darboux–Bäcklund transformation

In [3] we obtained the zero-curvature representation of the system (4) which means that we
constructed an over-determined linear system for a matrix function +n(ζ, t) such that

+n+1 = L(ζ |n)+n (17)

∂t+n = V (ζ |n)+n (18)
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where

V (ζ |n) =
2∑

j=−2

ζ jVj (n) L(ζ |n) = q−Nn−Hn

2γ

2∑
j=−2

ζ jLj (n). (19)

Here

V0(n) = 2iγ (βns
∗
n−1 + β∗

nsn−1)σ
z V±2 = ∓ 1

4σ
z (20)

V+1(n) = −
√

2γ

2

(
0 iβ∗

n

sn−1 0

)
V−1(n) =

√
2γ

2

(
0 s∗

n−1
−iβn 0

)
(21)

while

L0(n) = 2iγ

(
βns

∗
n 0

0 β∗
nsn

)
− q2(Nn+Hn)σ z L±2 = 1

2 (σ
z ± I ) (22)

L+1(n) =
√

2γ

(
0 iβ∗

n

sn 0

)
L−1(n) =

√
2γ

(
0 s∗

n

−iβn 0

)
. (23)

The parameter ζ which exists in C and which appears in equations (17)–(19) will be thought of
as the spectral parameter, while in continuum limit, recognizing the further spectral parameter
λ introduced below, one can see that because the half-space problem interchanges time t and
space x it is (18) which becomes the scattering problem in the usual 2×2 sense (the Zakharov–
Shabat–AKNS linear system [21]); σx,y,z are the Pauli matrices. The compatibility condition
of the two linear system equations (17), (18) under the isospectral condition ∂tζ = 0 is

∂tL(ζ |n) + L(ζ |n)V (ζ |n) − V (ζ |n + 1)L(ζ |n) = 0 (24)

and this coincides with the classical equations (4), independent of ζ . However, ζ = eiγ λ,
λ ∈ C as it was introduced in [3]; λ is a second ‘spectral parameter’ and the real axis in
the λ-plane is the circle of unit radius in the ζ -plane; λ is the usual spectral parameter for
the envelope MB equations derived in continuum limit. Notice that time t is suppressed in
equations (17), (18): an explicit time dependence will be indicated only where and when it
is needed. Reference to equations (17) and (18) may make plain that the function +n(ζ )

possesses essential singularities of rank 2 at ζ = 0,∞. It is also important to notice that the
linear equations (17) and (18) are invariant under the transformations

+n(ζ ) → (−1)n−1σy+∗
n

(
1

ζ ∗

)
σy +n(ζ ) → σ z+n(−ζ )σ z. (25)

We can now turn to the derivation of exact solutions of the LMB system equations (4). For
this, as mentioned, we developed a variant of the Darboux–Bäcklund dressing procedure [23]
rather then any inverse scattering method [21, 22]. The essence of the dressing procedure is
to choose a ‘seed’ solution of the system equations (4), typically some trivial solution, and
construct from it a new solution associated with additional points ζν , ν = 1, . . . , N (say) of
the discrete spectrum: thus det +n(ζν, t) = 0 [21, 23, 24] for the new solution +n(ζ, t).

For initial and boundary conditions observe that for the SIT or envelope MB system
the typical experimental situation is the half-space problem: an initial optical pulse enters,
supposedly without reflection, from x < 0 into the resonant medium x � 0 and here breaks up
into background radiation and a sequence of soliton pulses. The corresponding mathematical
problem is the Cauchy problem at the point x = 0: ε(x, t)|x=0 = ε0(t) together with the
asymptotic boundary conditions (in t) that, for x > 0, N → N−, ρ → 0 as t → −∞. For the
so-called ‘attenuator’ N− is the ground state N− = −1 of the inversion density. For the lattice
problem we therefore take the half-space problem in which βn(t) and sn(t) are sufficiently
decreasing for |t | → ∞, while Hn(t) → H such that H corresponds to N−. In this way we
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would look for a solution in the half-space n > 0, for which it becomes the Cauchy problem
specified by the conditions

βn(t)|n=1 = β1(t) sn(t)|n=1 = s1(t) Hn(t)|n=1 = H1(t). (26)

With this as motivation, we reported in [1] exact N -soliton solutions derived by the dressing
procedure based on the seed solution

βn = 0 sn = 0 Hn = H. (27)

The Darboux–Bäcklund program can be implemented for an arbitrary number of points
of the discrete spectrum, N . The one-soliton case is that when there is only one point of the
discrete spectrum ζ0 = eγ0+iα0 (say) and γ0 < 0. We then found in [1] the formulae

βn(t) = i

√
2

γ
sinh (2γ0)

exp i(φ(n, t) − α0)

cosh (ψ(n, t) − γ0)
(28)

sn−1(t) = −
√

2

γ
sinh (2γ0)

exp i(φ(n, t) + α0)

cosh (ψ(n, t) + γ0)
(29)

q2(Nn+Hn) = q2H 1 − tanh (ψ(n, t) − γ0) tanh ϑ0

1 − tanh (ψ(n, t) + γ0) tanh ϑ0
. (30)

Here

φ(n, t) = t cosh (2γ0) sin (2α0) − n70 + φ0 (31)

ψ(n, t) = t sinh (2γ0) cos (2α0) − nϑ0 + ψ0 (32)

ϑ0 = 1

2
ln

sinh2(γ0 − Hγ ) + sin2 α0

sinh2(γ0 + Hγ ) + sin2 α0
+ 2γ0 (33)

70 = arg
sinh (γ0 − Hγ + iα0)

sinh (γ0 + Hγ + iα0)
+ 2α0 (34)

and φ0 and ψ0 are arbitrary real constants.
We now turn to the quantum case and discuss the quantum counterpart of the linear system

equations (17), (18). In order to solve the two quantum models HI,II, the two models (10), (14),
we have to construct the auxiliary composite model which may be solved for its eigenstates
and eigenvalues by the QISM. We shall show now that the Hamiltonians (10), (14) commute
with the generating function of the integrals of motion of this composite model and thus are
also integrable.

The L-operator of the quantum composite model is defined as

L(n|u) = LS(n|u)LQB(n|u) (35)

with the q-boson L-operator equal to

LQB(n|u) =
(

u i
√
ηβ†

n

−i
√
ηβn −u−1

)
(36)

and the spin L-operator

LS(n|u) =
(
u − u−1q2Hn −ηχ+

n

ηχ−
n u−1 − uq2Hn

)
. (37)

Here and in (36) u ∈ C is now the spectral parameter and u∗ is its conjugate. Further, we shall
make use of the following symmetry properties of the composite L-operator (35):

L∗(n|u∗) = −σ 2L(n|u−1)σ 2 (38)

eβ(Nn+Hn)L(n|u)e 1
2 βσ

3 = e
1
2 βσ

3
L(n|u)eβ(Nn+Hn) (39)
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where β is a complex number, and the star means Hermitian conjugation of the matrix elements
without the transposition of the matrix; the σ i are the Pauli matrices.

The L-operator (35) satisfies the bilinear intertwining relation

R(u, v)L(n|u) ⊗ L(n|v) = L(n|v) ⊗ L(n|u)R(u, v) (40)

with the R-matrix

R(u, v) =



f (v, u) 0 0 0

0 g(v, u) q−1 0
0 q g(v, u) 0
0 0 0 f (v, u)




f (v, u) = u2q − v2q−1

u2 − v2
g(v, u) = uv

u2 − v2
(q − q−1)

(41)

and u, v ∈ C spectral parameters.
The monodromy matrix T (u) is introduced as

T (u) = L(M|u)L(M − 1|u) · · ·L(1|u) =
(

A(u) B(u)

C(u) D(u)

)
. (42)

The commutation relations of its matrix elements are given by

R(u, v)T (u) ⊗ T (v) = T (v) ⊗ T (u)R(u, v). (43)

Under periodic boundary conditions the important quantity is the transfer matrix

τ(u) = Tr T (u) = A(u) + D(u) (44)

satisfying

[τ(u), τ (v)] = 0 (45)

for arbitrary u, v ∈ C.
From (38) and (45) it follows that

τ †(u∗) = τ(u−1) [τ(u), τ †(u)] = 0. (46)

The commutativity of the total number operator

N =
M∑
n=1

(Nn + Hn + S) (47)

with the transfer matrix τ(u)

[τ(u),N ] = 0 (48)

is the consequence of the relation (39). From the same relation we can derive the equality

NB(u) = B(u)(N + 1). (49)

Hence, we can consider B(u) as the creation operator of a quasi-particle. By direct calculation
it is verified that the total number operator (47) commutes with the Hamiltonians (10) and (14):

[HI,II,N ] = 0. (50)

It may be proved that the Hamiltonians (10) and (14) commute with the transfer matrix (44):

[HI,II, τ (u)] = 0. (51)

Namely, one can introduce

h =
M∑
n=1

hn,n−1 (52)
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where

hn,n−1 = iq2Hn(1 + ηβ†
nβn−1) + η3/2(β†

nχ
−
n + χ+

n βn−1) − iq−2S. (53)

It then follows from these expressions that the operator h (52), with the densities hn,n−1,
equation (53), and its conjugate h† commute with the transfer matrix (44)

[h, τ(u)] = [h†, τ (u)] = 0. (54)

The Hamiltonians (10) and (14) are then expressed through h and h†:

2ηHI = h + h† (55)

2ηHII = i(h − h†) (56)

and commute with τ(u).
The quantum space of the model is the tensor product of the Fock space and the space

of the representation of Uq[su(2)]. The local vacuum vector on each lattice site n is given
by |0〉n ⊗ |S,−S〉n, where |0〉n is the vacuum vector: βn|0〉n = 0, and |S,−S〉n is the lowest
vector of the (2S + 1)-dimensional representation of Uq[su(2)]: χ−

n |S,−S〉n = 0. The local
vacuum vector satisfies the equation

L(n|u)|0〉n ⊗ |S,−S〉n =
(
a(u) ∗

0 d(u)

)
|0〉n ⊗ |S,−S〉n (57)

where the vacuum eigenvalues

a(u) = u(u − u−1q−2S) d(u) = −u−1(u−1 − uq−2S). (58)

It follows from (57) that the vacuum vector

|A〉 =
M∏
n=1

|0〉n ⊗ |S,−S〉n (59)

is an eigenvector of the transfer matrix (44):

τ(u)|A〉 = (aN(u) + dN(u))|A〉.
The N -particle eigenfunctions of the transfer matrix are constructed in the usual way by
applying the creation operator B(u) (42) with (49) to the vacuum vector (59):

|+N(u1, u2, . . . , uN)〉 =
N∏
n=1

B(un)|A〉. (60)

The parameters uj have to satisfy the Bethe equations(
a(un)

d(un)

)M

=
N∏
m=1
m�=n

f
(
um, un

)
f

(
un, um

) . (61)

The eigenvalues θN(u) of τ(u) to which the eigenstates (60) belong are

τ(u)|+N 〉 = θN(u)|+N 〉

qNθN(v) = aM(v)

N∏
n=1

f (un, v) + dM(v)

N∏
n=1

f (v, un).

The eigenfunction (60) is an eigenfunction of the total number operator (47)

N |+N 〉 = N |+N 〉. (62)
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By substituting (41) and (58) into (61) we can obtain the Bethe equations in the explicit form(
u2
n

unq
S − u−1

n q−S

unq−S − u−1
n qS

)M

=
N∏
m=1
m�=n

u2
nq − u2

mq
−1

u2
nq

−1 − u2
mq

. (63)

Thus, after the substitution u = eiγ λ the Bethe equations take the form

e−ip(λn)M =
N∏
m=1
m�=n

sin(λn − λm − i)

sin(λn − λm + i)
(64)

where p(λ) is the one-particle momentum

p(λ) = i ln e2iγ λ

(
sin γ (λ − iS)

sin γ (λ + iS)

)
. (65)

It is appropriate to comment here on the meaning of the quantum Darboux–Bäcklund
transformation. In the quantum case the linear problem equation (17) must be an operator
relation, while the generating function of the quantum V operators is

Mn(u, v) = tr1(T
+(n|v) ⊗ I )R(u − v)(T −(n|v)). (66)

Here tr1 is the trace with respect to the first space in the tensor product and the T ±(λ|n)
are matrix functions with operator values, namely

T +(n|v) = L(M|v) · · ·L(n|v)
≡

(
a+(n|v) b+(n|v)
c+(n|v) d+(n|v)

)
(67)

T −(n|v) = L(n|v) · · ·L(1|v)
≡

(
a−(n|v) b−(n|v)
c−(n|v) d−(n|v)

)
. (68)

In [25] it was demonstrated that the quantum analogue of the Darboux–Bäcklund
transformation is in fact the application of the creation operator of the collective excitation,
B(u), to the given state of the quantum system.

The eigenenergies of the Hamiltonians HI,II are

HI,II|+N 〉 = E
I,II
N |+N 〉

with

EI
N = −

N∑
n=1

un − u2
n

2i
= −

N∑
n=1

sin(2γ λn)

EII
N = −

N∑
n=1

un + u2
n

2
= −

N∑
n=1

cos(2γ λn).

(69)

The parameters un and λn are the roots of the Bethe equations (63) and (64) respectively.
Because of the commutativity (50) we can consider

H̃II = HII + N (70)

as the Hamiltonian of the ‘II’ model with its eigenenergy. Because of (62) this eigenenergy is

EII
N =

N∑
n=1

(1 − cos(2γ λn)) =
N∑
n=1

2 sin 2(γ λn). (71)

The Bethe equations (64) possess solutions with both real λn ∈ R and complex
λ(k)n = αn− i

2 (k+1−2m)+O(e−M); m = 1, . . . , k; Im αn = 0. The real solutions correspond
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to elementary excitations; the complex ones correspond to them-string solutions (and these are
bound states of quasi-particles). The existence of the complex-valued solutions λ(k)n indicates
the existence of these bound state m-string solutions in both of the models discussed in this
paper.

3.1. Continuum limits

The results for the eigenstates and eigenenergies (71) must complete this paper. We have
solved the quantum models HI and HII (at this non-dynamical level of solution) and shown
that these are N -string solutions. Later we hope to show that in matrix elements like (1) with
N → ∞ we can regain the classical q-soliton solution (28)–(33) while more generally we
hope to find the q-multisoliton solutions of [1]. Here, however, we conclude with continuum
limits for each of the two quantum models, HI and HII.

We consider a discrete medium (of spins) and a continuum of bosons in the limit as the
lattice spacing � tends to zero. Thus, we consider with � → 0 the case of the ‘discrete’
medium

L = M� x = n� γ = c�

2

βn =
√
�B(x) B(x) = b(x) − �γ

2
b†(x)b(x)b(x) + O(�2)

χ−
n =

(
1 +

c�

4
(2S3

n + 1)

)
S−
n + O(�2) Hn = S3

n.

Here the Si
n are the spin variables (16) and [b(x), b†(y)] = δ(x − y). In this limit (10)

becomes the Hamiltonian of the continuum-limit Dicke model with the integrable ‘extended
Dicke model’: HI → �HD,

HD = −i
∫ L

0
dx b†(x)∂xb(x) − √

c

M∑
n=1

{b†(xn)S
−
n + S+

nb(xn)}. (72)

(Note that this usage of Dicke model is that of [20] and not that of [10]). For S = 1
2 the model

defined by the Hamiltonian (70) in the ‘discrete’ medium limit is HII → �2H ,

H = 1
2HBG −

M∑
n=1

S3
nb

†(xn)b(xn) + i
√
c{S+

n δb(xn) − S−
n δb

†(xn)} − 1
12c

2(S3
n + 1

2 ). (73)

Here HBG is the Hamiltonian of the Bose gas

HBG =
∫ L

0
dx ∂xb

†(x)∂xb(x) + cb†(x)b†(x)b(x)b(x)

and

δb(xn) = b(xn) − b(xn−1)

�
.

The Bethe equations (61) for the ‘discrete’ medium limit (up to the replacement of λ by
λ/2) take the form

e−iλnL

(
λn − icS

λn + icS

)M

=
N∏
m=1
m�=n

λn − λm − ic

λn − λm + ic
. (74)

The N -particle energy of the Hamiltonian (72) is given by

ED = −
N∑
n=1

λn (75)
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while the N -particle energy of the Hamiltonian (73) is

E = 1
2

N∑
n=1

λ2
n. (76)
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